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A transformation-free HOC scheme for incompressible viscous
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SUMMARY

We recently proposed a transformation-free higher-order compact (HOC) scheme for two-dimensional
(2-D) steady convection–diffusion equations on nonuniform Cartesian grids (Int. J. Numer. Meth. Fluids
2004; 44:33–53). As the scheme was equipped to handle only constant coefficients for the second-order
derivatives, it could not be extended directly to curvilinear coordinates, where they invariably occur as
variables.

In this paper, we extend the scheme to cylindrical polar coordinates for the 2-D convection–
diffusion equations and more specifically to the 2-D incompressible viscous flows governed by the
Navier–Stokes (N–S) equations. We first apply the formulation to a problem having analytical solution
and demonstrate its fourth-order spatial accuracy. We then apply it to the flow past an impulsively
started circular cylinder problem and finally to the driven polar cavity problem. We present our
numerical results and compare them with established numerical and analytical and experimental results
whenever available. This new approach is seen to produce excellent comparison in all the cases.
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1. INTRODUCTION

The steady two-dimensional (2-D) convection–diffusion equation in Cartesian coordinate system
(x, y) for a transport variable � in some continuous domain with suitable boundary conditions can
be written as

−∇2�+c1(x, y)
��
�x

+c2(x, y)
��
�y

= f (x, y) (1)
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c1 and c2 are the convection coefficients, and f is a forcing function. In Equation (1), the magnitude
of the convection coefficients determines the ratio of convection to diffusion and is sometimes
referred to as the Reynolds number (Re). The equation becomes convection dominated for large
Re’s and diffusion dominated for small Re’s. Most of the steady 2-D flows are expressed in this
form. It represents the convection–diffusion of many fluid variables such as mass, heat, energy,
vorticity, etc. With proper choice of c1, c2 and f , it can also be used to represent the complete
Navier–Stokes (N–S) equations.

The higher-order compact (HOC) finite difference schemes for the computation of incompress-
ible viscous flows [1–15] are gradually gaining popularity because of their high accuracy and
advantages associated with compact difference stencils. Most of these schemes were developed
for equations of the convection–diffusion type (1) and were well equipped to simulate incom-
pressible viscous flows governed by the N–S equations as well. A compact finite difference
scheme is one that utilizes grid points located only directly adjacent to the node about which
the differences are taken. In addition, if the scheme has an order of accuracy greater than two,
it is termed an HOC method. The higher-order accuracy of the HOC methods combined with
the compactness of the difference stencils yields highly accurate numerical solutions on rela-
tively coarser grids with greater computational efficiency. However, most of the HOC schemes
developed so far are mostly on uniform grids [1, 3–7, 9–12, 15]. The very few attempts that
have been made to develop HOC scheme on nonuniform grids for the convection–diffusion
equations [12–14, 16, 17] use the conventional transformation technique from the physical plane
to the computational plane. The solution is then computed on a rectangular uniform grid on
the computational plane and eventually transformed back to the physical plane. This inevitably
brings in the complications of having to deal with some new cross-derivative terms in the
transformed partial differential equations (PDE) along with increase in arithmetic operations.
In addition, the advantage of setting the diffusion coefficients appearing in the PDEs in the
physical space to unity is lost because they no longer remain the same in the transformed
space.

In a departure from this practice, Kalita et al. [2] developed an HOC scheme on rectangular
nonuniform grids for the steady 2-D convection–diffusion equation with variable coefficients
without any transformation. It was based on the Taylor series expansion of a continuous function
at a particular point for two different step lengths and approximation of the derivatives appearing
in the 2-D convection–diffusion equation on a nonuniform stencil. The original PDE was then used
again to replace the derivative terms appearing in the finite difference approximations, resulting
in a higher-order scheme on a compact stencil of nine points.

However, direct implementation of this and other approaches [1, 3, 4, 7, 9–12, 15] on polar coor-
dinates was not possible because of the fact that the second-order partial derivatives of the transport
variable representing the phenomenon of diffusion invariably come with variable coefficients.
All these schemes were equipped to deal with the variable convection coefficients only. In polar
coordinate system (r,�), Equation (1) takes the form

−∇2�+c1(r,�)
��

�r
+c2(r,�)

��

��
= f (r,�) (2)

Though Equations (1) and (2) are identical, the Laplacians appearing in the two equations
are different in terms of coefficients of the second-order partial derivatives with respect to the
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independent variables. Assorting derivatives of different orders, (2) may be written as

−�2�
�r2

− 1

r2
�2�

��2
+
(
c1(r,�)− 1

r

)
��

�r
+c2(r,�)

��

��
= f (r,�) (3)

In this paper, we extend the philosophy outlined in Reference [2] to develop an HOC scheme
for 2-D convection–diffusion equations on cylindrical polar coordinates. This is accomplished by
considering the coefficients of all the partial derivatives appearing in Equation (3) as variables, thus
making way for a straightforward extension of the proposed formulation to orthogonal curvilinear
coordinate system as well. It may be mentioned that the majority of the earlier endeavors to develop
HOC schemes on cylindrical polar coordinates were confined to the Poisson equation on uniform
grids [3, 15, 18–24].

To validate the proposed scheme, we first apply it to a problem of pure diffusion in polar
coordinates with known analytical solution and also carry out error analysis. In the process, we
also establish the theoretical rate of convergence of the scheme. The robustness of the scheme,
however, is better realized when it is applied to the problems of flow past an impulsively started
circular cylinder and the driven polar cavity. Both these flows are governed by the steady-state
incompressible N–S equations. We have used the streamfunction–vorticity (�–�) formulation of
the N–S equations for computing the flows. For the pure diffusion problem, our numerical results
are extremely close to the analytical results, whereas for the cylinder and cavity problems, our
solution agrees very well, both qualitatively and quantitatively with established numerical and
experimental results. The scheme is also seen to handle both Dirichlet (in the first problem) and
Neumann boundary conditions with ease (in the other two).

The paper has been arranged in five sections. Section 2 deals with the mathematical formulation
and discretization, Section 3 with the solution of the algebraic system of equations, Section 4 with
the numerical test cases and finally, Section 5 summarizes the whole work.

2. MATHEMATICAL FORMULATIONS AND DISCRETIZATION PROCEDURES

A more generalized form of Equation (3) in an annular region [r1,r2]×[�1,�2] may be written
as

a(r,�)
�2�
�r2

+b(r,�)
�2�

��2
+c(r,�)

��

�r
+d(r,�)

��

��
= f (r,�) (4)

Constructing on it, a nonuniform polar mesh (see a typical stencil in Figure 1), the HOC approxi-
mations for the first and second derivatives appearing in (4) at the (i, j)th node [2] can be obtained
as follows:

��

�r

∣∣∣∣
i, j

=�r�i, j −
1

2
(r f −rb)�

2
r�i, j −

r f rb
6

�3�
�r3

∣∣∣∣∣
i, j

− 1

24
r f rb(r f −rb)

�4�
�r4

∣∣∣∣∣
i, j

+O

(
r5f +r5b
r f +rb

)
(5)
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Figure 1. The nonuniform HOC stencil on polar coordinates.

�2�
�r2

∣∣∣∣∣
i, j

= �2r�i, j −
1

3
(r f −rb)

�3�
�r3

∣∣∣∣∣
i, j

− 1

12
(r2f +r2b −r f rb)

�4�
�r4

∣∣∣∣∣
i, j

− 1

60
(r f −rb)(r

2
f +r2b )

�5�
�r5

∣∣∣∣∣
i, j

+O

(
r5f +r5b
r f +rb

)
(6)

The derivatives with respect to � can be obtained in a similar way; here, r f =(ri+1−ri ), rb=
(ri −ri−1) and � f =(� j+1−� j ), �b=(� j −� j−1). The details of the nonuniform central difference
operators �r ,�

2
r , �� and �2� can be found in the Appendix. In view of the above equations,

Equation (4) may be approximated at the point (i, j) as

[a�2r +b�2�+c{�r −0.5(r f −rb)�
2
r }+d{��−0.5(� f −�b)�

2
�}]�i, j +�i, j = fi, j (7)

where �i, j is the truncation error given by

�i, j = −H1
�3�
�r3

−K1
�3�

��3
−H2

�4�
�r4

−K2
�4�

��4
+(r f −rb)(r

2
f +r2b )�1

+(� f −�b)(�
2
f +�2b)�2+O

(
r5f +r5b
r f +rb

,
�5f +�5b
� f +�b

)
(8)

with �1,�2 being the leading truncation error terms and

H1 = 1
6 {2a(r f −rb)+cr f rb}, H2= 1

24 {2a(r2f +r2b −r f rb)+cr f rb(r f −rb)}
K1 = 1

6 {2b(� f −�b)+d� f �b}, K2= 1
24 {2b(�2f +�2b−� f �b)+d� f �b(� f −�b)}
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Successive differentiation of (4) with respect to r and rearranging terms yield

�3�
�r3

=−1

a
{(ar +c)�2r�+cr�r�+d�r���+b�r�

2
��+dr���+br�

2
��− fr } (9)

�4�
�r4

= L1�
2
r�+L2�r�+L3�r���+L4�r�

2
��− d

a
�2r���− b

a
�2r�

2
��+L5���+L6�

2
��

− 1

a2
(2ar +c) fr + 1

a
frr (10)

with

L1= 1

a2
(2a2r +3car +c2)− 1

a
(arr +2cr ), L2= cr

a2
(2ar +c)− crr

a

L3= d

a2
(2ar +c)− 2dr

a
, L4= b

a2
(2ar +c)− 2br

a

L5= dr
a2

(2ar +c)− drr
a

, L6= br
a2

(2ar +c)− brr
a

Likewise

�3�

��3
=−1

b
{(b�+d)�2��+d����+c�r���+a�2r���+c��r�+a��

2
r�− f�} (11)

�4�

��4
=
{
1

b2
(2b2�+3db�+d2)− 1

b
(b��+2d�)

}
�2��+

{
d�

b2
(2b�+d)− c��

b

}
���

+
{
c

b2
(2b�+d)− 2c�

b

}
�r���+

{
a

b2
(2b�+d)− 2a�

b

}
�2r���− a

b
�2r�

2
��− c

b
�r�

2
��

+
{ c�
b2

(2b�+d)− c��

b

}
�r�+

{a�

b2
(2b�+d)− a��

b

}
�2r�

− 1

b2
(2b�+d) f�+ 1

b
f�� (12)

Using (9)–(12), Equation (8) can be written as

�i, j = [E1i, j�2r +E2i, j�
2
�+E3i, j�r +E4i, j��+E5i, j�r��

+E6i, j�r�
2
�+E7i, j�

2
r��+E8i, j�

2
r�

2
�]�i, j −F1i, j (13)

where

E1i, j = (ar +c)

a

{
H1− H2

a
(2ar +c)

}
+ H2

a
(arr +2cr )+ a�

b

{
K1− K2

b
(2b�+d)

}
+ K2a��

b

E2i, j = br
a

{
H1− H2

a
(2ar +c)

}
+ H2brr

a
+ (b�+d)

b

{
K1− K2

b
(2b�+d)

}
+ K2

b
(b��+2d�)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:683–708
DOI: 10.1002/fld



688 R. K. RAY AND J. C. KALITA

E3i, j = cr
a

{
H1− H2

a
(2ar +c)

}
+ H2crr

a
+ c�

b

{
K1− K2

b
(2b�+d)

}
+ K2c��

b

E4i, j = dr
a

{
H1− H2

a
(2ar +c)

}
+ H2drr

a
+ d�

b

{
K1− K2

b
(2b�+d)

}
+ K2c��

b

E5i, j = d

a

{
H1− H2

a
(2ar +c)

}
+ 2H2dr

a
+ c

b

{
K1− K2

b
(2b�+d)

}
+ 2K2c�

b

E6i, j = b

a

{
H1− H2

a
(2ar +c)

}
+ 2H2br

a
+ K2c

b

E7i, j = H2d

a
+ a

b

{
K1− K2

b
(2b�+d)

}
+ 2K2a�

b

E8i, j = bH2

a
+ aK2

b

F1i, j =
[
1

a

{
H1− H2

a
(2ar +c)

}
�r + H2

a
�2r + 1

b

{
K1− K2

b
(2b�+d)

}
��+ K2

b
�2�

]
fi, j

Substituting (13) in (7), the HOC approximation of Equation (4) on nonuniform polar grids can
be written as

[Ai, j�
2
r +Bi, j�

2
�+Ci, j�r +Di, j��+Gi, j�r��+Hi, j�r�

2
�+Ki, j�

2
r��+Li, j�

2
r�

2
�]�i, j =Fi, j (14)

where the coefficients are given by

Ai, j =ai, j +E1i, j −0.5(r f −rb)ci, j

Bi, j =bi, j +E2i, j −0.5(� f −�b)di, j

Ci, j =ci, j +E3i, j , Di, j =di, j +E4i, j , Gi, j =E5i, j

Hi, j =E6i, j , Ki, j =E7i, j , Li, j =E8i, j , Fi, j = fi, j +F1i, j

If (r,�) is replaced by (u1,u2), where u1 and u2 are the coordinate curves of an orthogonal
curvilinear coordinate system, (14) also represents the HOC scheme on nonuniform grids for
Equation (4) in curvilinear coordinate system (u1,u2). Thus, the extension of the current scheme
from polar coordinates to general orthogonal curvilinear coordinate system in 2-D is a mere
formality.

It is important to note that while simulating flows on curvilinear geometries by solving equations
of the form (4), one may come across the terms of the form 0

0 . In such cases, one may resolve
the 0

0 form by using the L’Hospital rule whenever possible or employ a local Cartesian mesh
at the point of singularity [25]. Other strategies for handling such singularities can be found in
References [18, 24, 26].
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3. SOLUTION OF ALGEBRAIC SYSTEMS

We now discuss the solution of algebraic systems associated with the newly proposed finite
difference approximations. The system of equations (14) can be written as

1∑
k1=−1

1∑
k2=−1

�i+k1, j+k2�i+k1, j+k2 =
1∑

k1=−1

1∑
k2=−1

	i+k1, j+k2 fi+k1, j+k2 (15)

where �,	’s are functions of the coefficients a,b, c and d appearing in Equation (4), their derivatives
and the step lengths r f ,rb,� f and �b. In matrix form, the system of algebraic equations given
by (15) can now be written as

A�=F (16)

where the coefficient matrix A is an asymmetric sparse matrix with each row containing at most
nine nonzero entries. For a grid of sizem×n, A is of sizemn×mn, and � and F aremn-component
vectors.

The next step now is to solve Equation (16); as the coefficient matrix A is not generally diagonally
dominant, conventional solvers such as Gauss–Seidel cannot be used. On uniform grids in Cartesian
coordinates, some of the associated matrices are symmetric and positive definite, which allows
algorithms like conjugate-gradient (CG) [27, 28] to be used. As the nonuniform grid and variable
coefficients a,b,c and d of Equation (4) invariably lead to nonsymmetric matrices, in order to solve
these systems, we use the hybrid biconjugate gradient stabilized method BiCGStab(2) [27, 28]
without preconditioning.
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Figure 2. Contours of the analytical and numerical solutions on a 21×21 grid for Problem 1.
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Figure 3. Surface plots of errors on 21×21 (top) and 41×41 (bottom) grids for Problem 1.

It may be noted that for the coupled nonlinear PDEs (such as the �–� form of the N–S
equations), an iterative solution procedure must be adopted. These iterations may be termed as
outer iterations. We use a decoupled algorithm where vorticity and stream functions are solved
iteratively and sequentially through hybrid BiCGStab(2) and lagging the appropriate terms. The
latter iterations may be termed as inner iterations, which must be carried out at every outer iteration
with updated data. We utilize a relaxation parameter 
 for the inner iteration cycles for both �
and �. In general, for larger values of Reynolds number, we needed smaller values of 
.

All of our computations were carried out on a Pentium 4 based PC with 512 MB RAM. For the
inner iterations, the computations were stopped when the norm of the residual vector r̄=F−A�
(� being either � or �) arising out of Equation (16) fell below 0.5×10−6. For the steady-state
solution of the problems governed by the N–S equations, steady state was assumed to reach when
the maximum �-error between two successive outer iteration steps was smaller than 1.0×10−9.

4. NUMERICAL EXPERIMENTS

In order to study the validity and effectiveness of the proposed scheme, it is applied to three
problems. These are (i) a problem of pure diffusion, (ii) the flow past an impulsively started
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Table I. Problem 1: rate of convergence at selected grid points.

Grid size Location Computed solution Analytical solution Abs. error Convergence rate

21×21 1.973200e−1 5.252619e−5
4.0070

41×41 (1.781165,0.863938) 1.973692e−1 1.973725e−1 3.267036e−6
4.0017

81×81 1.973723e−1 2.039531e−7
3.9993

161×161 1.973725e−1 1.275361e−8

21×21 2.270335e−1 4.072842e−5
4.0085

41×41 (1.413912,0.392699) 2.270717e−1 2.270742e−1 2.530637e−6
4.0021

81×81 2.270741e−1 1.579332e−7
4.0000

161×161 2.270742e−1 9.871125e−9

21×21 6.007732e−3 5.516783e−6
4.0046

41×41 (7.989783,0.785398) 6.012905e−3 6.013249e−3 3.437078e−7
3.9966

81×81 6.013227e−3 2.153169e−8
3.8526

161×161 6.013247e−3 1.490525e−9

21×21 6.257496e−2 3.414488e−5
4.0069

41×41 (3.172549,0.785398) 6.260698e−2 6.260911e−2 2.123918e−6
4.0014

81×81 6.260898e−2 1.326146e−7
3.9947

161×161 6.260910e−2 8.319174e−9

circular cylinder and (iii) the driven polar cavity flow problem. As the first problem has analytical
solutions, Dirichlet boundary conditions are used, while for the next two, both Dirichlet (for �)
and Neumann (for �) boundary conditions are applied.

4.1. Test problem 1: a problem of pure diffusion

We consider the equation

�2�
�r2

+ 1

r

��

�r
+ 1

r2
�2�

��2
=0 (17)

in the region [�,�]×[0,/2], with the boundary conditions

�(�,�)=�
(

2
−�
)

and �(�,�)=0 for 0���/2

�(r,0)=�
(
r,



2

)
=0 for ��r��
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The analytical solution of (17) is given by

�(r,�)=
∞∑
n=1

2



1

(2n−1)3

(�

r

)(4n−2)
sin(4n−2)�

(
r (8n−4)−�(8n−4)

�(8n−4)−�(8n−4)

)
(18)

We present our results computed on grid sizes ranging from 21×21 to 161×161 for �=1 and
�=10 in Figures 2 and 3 and Table I. Figure 2 displays the analytical and numerical contours of
the solution. It is heartening to note that on a grid of size 21×21 only, one can hardly distinguish
the numerical solutions from the exact ones. This fact is also confirmed by Figure 3, where the
surface plots of the errors are shown on two different grid sizes 21×21 and 41×41 for which the
maximum absolute errors are extremely small, namely 5.29×10−5 and 1.03×10−5 only.

In Table I, we exhibit the analytical and computed solutions at four representative points on the
solution domain along with the absolute errors on four different grid sizes. It is seen from the table
that with grid refinement, the point-wise error decays with O(h4), as expected. Here, the rate of
convergence is calculated as

M= log(e1/e2)

log(N2/N1)

where e1, e2 are the absolute errors estimated at a particular point for two different grids with
N1+1 and N2+1 points in the either direction. It may be noted that the maximum errors for
different grids occur at different points and are not directly comparable.

4.2. Test problem 2: flow past an impulsively started circular cylinder

Next we consider the steady, incompressible flow over an infinitely long cylinder of circular cross-
section. The flow is governed by the incompressible N–S equations. We use the �–� formulation of
the N–S equations in cylindrical polar coordinates (r,�). In nondimensional form, they are given by

�2�
�r2

+ 1

r

��

�r
+ 1

r2
�2�

��2
= Re

(
u

��

�r
+ v

r

��

��

)
(19)

�2�
�r2

+ 1

r

��

�r
+ 1

r2
�2�

��2
=−� (20)

Here, � is the streamfunction, � the vorticity, u, v, respectively, are the radial and tangential
velocity components and Re=UD/� is the Reynolds number with U being the characteristic
velocity, D the diameter of the cylinder and � the kinematic viscosity. The velocities u and v in
terms of � are given by

u= 1

r

��

��
and v=−��

�r
(21)

and the vorticity � is given by

�= 1

r

[
�
�r

(vr)− �u
��

]
(22)
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θ

Figure 4. A typical 101×101 mesh for the flow past a circular cylinder problem.
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Figure 5. Steady-state streamlines for Re=10,20,40 and 60 for the motion
past a circular cylinder problem.

We assume the cylinder to be of unit radius placed in an infinite domain. At the far field,
a potential flow is assumed with uniform free-stream velocity U∞ =(1,0). A typical computa-
tional grid of size 101×101 is shown in Figure 4. We employ a uniform grid spacing along the
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Figure 6. Steady-state vorticity contours for Re=10,20, 40 and 60 for the motion
past a circular cylinder problem.

�-direction and a nonuniform grid spacing in the r -direction with clustering around the surface of
the cylinder using the following functions:

� j = 2

jmax
and ri =exp

(
�i

imax

)
Here, the parameter � determines the outer radius of the computational domain. The continuity
conditions at �=0 and �=2 are taken as the boundary conditions along those two lines.

We now derive the boundary conditions for stream function and vorticity. On the solid surface
r = R0, u=v=�=0. In the far stream r = R∞, velocity becomes uniform and equal to U∞ as
r →∞. In terms of stream function, this condition is expressed as �→U0r sin� as r →∞.

For vorticity, the far-stream condition is given by �=0 at r = R∞. On the solid surface r = R0,
however, vorticity is not zero. Making use of the fact that �=0, ��/�r =0 on r = R0, we arrive
at �=−�2�/�r2 thereat. We proceed to obtain a compact approximation of the vorticity on the
solid boundary as follows:

−v0, j =
(

��

�r

)
0, j

=�+�0, j −
r f
2

(
�2�
�r2

)
0, j

− r2f
6

(
�3�
�r3

)
0, j

+O(r3f )
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so that we get the finite difference approximation as

0= �1, j

r f
− r f

2

(−�0, j
)− r2f

6

(
−
(

��

�r

)
0, j

)

0= �1, j

r f
+ r f

2
�0, j +

r2f
6

(
�1, j −�0, j

r f

)
yielding

2�0, j +�1, j =− 6

r2f
�1, j (23)

We present steady-state results for this flow for Reynolds numbers Re=10,20,40 and 60 in
Figures 5–7 and Tables II–IV. Simulation for higher Reynolds number was not considered because
earlier experimental and numerical studies [29, 30] indicated that the flow no longer remains steady
for Re’s beyond 60. Therefore, we present flow profiles for Reynolds numbers up to 60 only,
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Figure 7. Comparison of vorticities on the cylinder surface for different Res with the results of
References [29, 30] for the motion past a circular cylinder problem.

Table II. Problem 2: effect of grid size on wake lengths and separation angles.

Re=20 Re=40

Grid 75 101 151 75 101 151
�s 42.9248 43.2756 43.4224 51.3012 51.5342 51.7018
L 1.8331 1.8276 1.8226 4.4135 4.3988 4.3921
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Table III. Problem 2: effect of far-field boundary on the wake lengths and separation angles.

Re=20 Re=40

R∞ 35.03 60.14 75.17 35.03 60.14 75.17
�s 43.6248 43.2156 42.9248 51.9612 51.6342 51.3012
L 1.8177 1.8253 1.8331 4.4044 4.4101 4.4135

Table IV. Problem 2: comparison of the wake lengths and separation angles for different Reynolds numbers.

Reference Reference Reference Reference Reference Reference Reference
Re [29] [31] [32] [30] [33] [16] [34] Present

L 20 1.88 1.87 1.87 1.82 1.842 1.77 1.92 1.8331
40 4.69 4.65 4.27 4.48 4.49 4.21 4.51 4.4135

�s 20 43.7 — — 42.9 42.96 41.3277 42.79 42.9248
40 53.8 — — 51.5 52.84 51.0249 52.84 51.3012

CD 20 2.045 2.0027 — 2.001 2.152 2.0597 2.111 2.0193
40 1.522 1.5359 — 1.498 1.499 1.5308 1.574 1.5145

Figure 8. Schematic diagram of the driven polar cavity problem.

more so for Re=20 and Re=40, for which experimental and numerical results [16, 29–35] exist
in plenty.

In Figure 5, we exhibit the streamlines from Re=10 to 60. In all the cases, two symmetrical,
stationary circulating eddies develop behind the cylinder. With increase in Re values, one can see
the increase in the sizes of the vortices. The corresponding vorticity contours for the same range
of Reynolds numbers are shown in Figure 6.

It is worth mentioning that though several studies [29, 30, 36] have presented the so-called
steady-state results for this flow at Re=60, many experimental and numerical results have shown
conclusively that eventually asymmetry sets in and the flow becomes unsteady for this Reynolds
number [37–43]. Therefore, the results presented here for Re=60 may be termed as the simulated
converged solution of the N–S equations governing the flow.

We also compute the wake length L: the distance between the rear most point of the cylinder
to the end of the wake and the angle of separation �s. These parameters are then compared to
verify the grid independence and dependence of the computed solution on the assumed far field. In
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A

B

C

D

(41X41) grids

Figure 9. A typical 41×41 nonuniform grid for the driven polar cavity problem.

Table II, we present these parameters on grid sizes ranging from 75×75 to 151×151 and Table III
shows the variation of the same parameters for far-field boundaries located at R∞s ranging from
35.03 to 75.17. Here, the grid size has been fixed at 75×75. From these tables, it is clear that a
grid of size 101×101 and a far field given by R∞ =75 are enough for accurate resolution of the
flow. In Table IV, we present our computed L ,�s and the drag coefficient CD with those obtained
by [16, 29–31, 33, 34]. We also compare the vorticities along the surface of the cylinder for the
range of Reynolds numbers considered here with those of References [29, 30] in Figure 7. In all the
cases, excellent comparison with the established numerical results is obtained, both qualitatively
and quantitatively.

4.3. Test problem 3: driven polar cavity flow

Finally, to validate our proposed HOC scheme, we apply it to solve the driven polar cavity problem.
This flow is also governed by the N–S equations (19)–(21). This problem was first studied both
experimentally as well as numerically by Fuchs and Tillmark [44]. A schematic diagram of the
problem is shown in Figure 8. The region ABCD is the domain of the problem. The inner circle
DA is moving with an angular clock-wise velocity v=v0=1, which drives the flow. All the other
boundary walls are fixed. Here, u and v are the radial and tangential velocities, respectively; the
Reynolds number, Re, is given by v0R0/�, where OD=OA= R0 is the radius of the inner circle,
v0 is the surface velocity of the rotating cylinder and � is the kinematic viscosity of the fluid. No
slip boundary conditions are applied on the solid walls. Thus boundary conditions for u and v are
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(a)

(b)

Figure 10. Steady-state streamlines for the driven polar cavity problem for Re=55:
(a) numerical and (b) experimental [44].

given by: u=0,v=1 on D̂A and u=v=0 on the other three walls. Using the normal velocity
boundary conditions, we can get �=0 on all the boundary walls. Making use of the fact that

�2�
�r2

+ 1

r

��

�r
=−�, �=0 and v=−��

�r
=1

along the boundary D̂A, we obtain a third-order accurate approximation of � as

⇒�0, j + �1, j

2
=− 3

h0

(
1+ �1, j

h0
− h0
2r0

+ h20
6r20

)
(24)

as in problem 2, where h0=(r1−r0). In a similar way, one can approximate the vorticities along
the other three boundaries as: along ÂB

�i,0+ �i,1

2
= 3

r2i ��20
�i,1 (25)

along B̂C

�n−1, j + �n−2, j

2
= 3

h2n−2

�n−2, j (26)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:683–708
DOI: 10.1002/fld



HOC SCHEME FOR N–S EQUATIONS ON POLAR COORDINATES 699

(a)

(b)

Figure 11. Steady-state streamlines for the driven polar cavity problem for Re=350:
(a) numerical and (b) experimental [44].
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Figure 12. The u- and v-velocity profiles on different grid sizes for the driven polar cavity
flow problem along �=0 for Re=55.

along Ĉ D

�i,m−1+ �i,m−2

2
=− 3

r2i ��2m−2

�i,m−2 (27)
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Figure 13. The u- and v-velocity profiles on different grid sizes for the driven polar cavity
flow problem along �=0 for Re=350.

(a) (b)

Figure 14. Vorticity contours for (a) Re=55 and (b) 350 for the driven polar cavity problem.

where hn−2=rn−1−rn−2,��0=�1−�0,��n−2=�m−1−�m−2 with n−1 and m−1 denoting
the maximum index along the r and �-directions, respectively. In their work, Lee and Tsuei
[45] observed that the large solution errors propagate near the rotating boundary. Therefore,
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(a) (b)

Figure 15. The (a) streamlines and (b) vorticity contours for Re=1000 for the driven polar cavity problem.

-30 -20 -10 0 10 20 30
-300

-240

-180

-120

-60

0

60

120

180

240

Re=55
Re=350
Re=1000

(a) r

1 1.2 1.4 1.6 1.8 2 2.2

-12

-6

0

6

Re=55
Re=350
Re=1000

(b)

Figure 16. Vorticity (a) along the rotating wall and (b) along the radial line �=0 for
the driven polar cavity problem.
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Figure 17. Comparison between experimental and present numerical u and v results for
Re=55 along the radial line �=0.
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Figure 18. Comparison between experimental and present numerical u and v results for
Re=350 along the radial line �=0.

we cluster the region in the vicinity of the rotating boundary using the same stretching func-
tions used in problem 2; Figure 9 shows a typical 41×41 nonuniform mesh used for this
problem.

We present our computed solutions in Figures 10–21 and Table V. In Figure 10, we present
streamlines obtained from our numerical simulation on an 81×81 grid side by side with the one
obtained from the experimental results of [44] for Re=55. The corresponding comparison for
Re=350 on a same grid size is shown in Figure 11.
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Figure 19. u and v plots for Re=1000 along the radial line �=0.

In Figures 12 and 13 we, respectively, present the u- and v-velocity profiles along �=0 on four
different grid sizes 41×41,61×61,81×81 and 101×101 for Re’s 55 and 350, respectively. From
these figures, it is clear that a 61×61 grid is enough to achieve grid-independence for Re=55
while we needed an 81×81 grid for Re=350.

Figure 14 shows the vorticity contours for Re=55 and Re=350. In Figure 15, we show the
streamlines and vorticity contours for Re=1000; our streamline patterns are very similar to those
in Reference [44]. In Figures 16(a) and (b), we exhibit the variation of the vorticity along the rotating
wall D̂A and the radial line �=0, respectively.

In Figure 17, we present the u- and v-velocities along the radial line �=0 obtained through our
computation on an 81×81 grid for Re=55 along with the experimental results of [44]. Similar
comparison for Re=350 is presented in Figure 18. In both the cases, we achieve an excellent
agreement between the numerical and experimental results. It may be mentioned that in [44],
although the numerical results were close to the experimental ones for lower Re’s, their high Re
results, even on the finest grids were not adequate enough to match the experimental results. The
reason for this could be the use of lower-order (first or at most second order) approximation of
the derivative terms. As no data are available for Reynolds number 1000 in literature, we present
our computed u- and v-velocity profiles along the radial line �=0 in Figure 19.

In Table V, we present the optimal successive under-relaxation parameter 
 for the inner
BiCGStab(2) iterations used in our computations for Re=55 and 350 on three different grids
along with the CPU times. For the outer iterations, the 
 value was fixed at 0.650 for both � and
� after a series of experiments. It is heartening to note that on a relatively finer 81×81 grid, for
Re=350, steady-state solution is obtained in less than 1.5min.
We also exhibit the convergence history in Figures 20 and 21, which provides a clear picture

of the fall of the inner BiCGStab(2) iteration number and the infinity norm against the outer
iteration number till steady state. In Figure 20, we present the convergence history of the
inner BiCGStab(2) iteration against the outer iterations for � and � for Re=55 and 350; like-
wise in Figure 21, we present the fall of the infinity norm for the same flow variables and
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(a) (b)

(c) (d)

Figure 20. Convergence history: outer iteration versus inner iteration of (a) � for Re=55; (b) � for
Re=350; (c) � for Re=55; and (d) � for Re=350.

Reynolds numbers. These figures clearly indicate that the convergence pattern is smooth in all
the cases.

5. CONCLUSION

In this paper, we extend a recently developed HOC scheme for the steady-state convection diffusion
equations on nonuniform Cartesian grids to cylindrical polar grids; further extension of the scheme
to general curvilinear coordinate system is straightforward. To bring out different aspects of the
scheme, we first apply this new approach to a diffusion equation having analytical solution, then
to the motion past an impulsively started circular cylinder and finally to the driven polar cavity
problem. In the process, we also demonstrate the fourth-order spatial accuracy of our scheme. In the
first problem, Dirichlet boundary conditions are used and for the other two, compact higher-order
approximations have been developed and successfully implemented for the Neumann boundary
conditions. The robustness of the scheme is illustrated by its applicability to the last two fluid flow
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(a) (b)

(c) (d)

Figure 21. Convergence history: outer iteration versus infinity norm of (a) � for Re=55; (b) � for
Re=350; (c) � for Re=55; and (d) � for Re=350.

Table V. Problem 3: comparison of CPU times and under-relaxation parameter 
 for the
BiCGStab inner ieratios on different grids for Re=55 and 350.

Re Grid size 
 for � 
 for � CPU time (in seconds)

21×21 0.305 0.650 0.408
55 41×41 0.205 0.500 4.368

81×81 0.150 0.350 40.011

21×21 0.325 0.600 0.944
350 41×41 0.225 0.500 7.516

81×81 0.175 0.375 81.237

problems of varying physical complexities and their accurate computations. In addition, the use
of the hybrid biconjugate gradient stabilized algorithm for solving the algebraic systems arising at
every outer iteration step makes the solution procedure computationally efficient in capturing the
steady-state solutions. The results obtained in all the test cases on relatively coarser grids are in
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excellent agreement with analytical, experimental and established numerical results, underlying the
high accuracy of the scheme. As our scheme has the added advantage of being applicable to general
orthogonal curvilinear coordinate system, it has tremendous potential for efficient computation
of more complex problems of incompressible viscous flows. Currently we are working on the
extension of this formulation to transient flows.

APPENDIX A: DETAILS OF THE FINITE DIFFERENCE OPERATORS

The expressions for the finite difference operators appearing in the various equations in Section 2
are as follows:

�r�i, j =
�i+1, j −�i−1, j

2�r

���i, j =
�i, j+1−�i, j−1

2��
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rb
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Here, r f =(ri+1−ri ), rb=(ri −ri−1), � f =(� j+1−� j ), �b=(� j −� j−1), �r =(r f +rb)/2 and
��=(� f +�b)/2 as defined in Section 2.
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